Motivic Classes of Commuting Varieties via Power Structures

نویسنده

  • JIM BRYAN
چکیده

We prove a formula, originally due to Feit and Fine, for the class of the commuting variety in the Grothendieck group of varieties. Our method, which uses a power structure on the Grothendieck group of stacks, allows us to prove several refinements and generalizations of the Feit-Fine formula. Our main application is to motivic DonaldsonThomas theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hirzebruch classes and motivic Chern classes for singular (complex) algebraic varieties

In this paper we study some new theories of characteristic homology classes of singular complex algebraic varieties. First we introduce a natural transformation Ty : K0(var/X) → H∗(X) ⊗ Q[y] commuting with proper pushdown, which generalizes the corresponding Hirzebruch characteristic. Here K0(var/X) is the relative Grothendieck group of complex algebraic varieties over X as introduced and studi...

متن کامل

The Motivic Spectral Sequence

In this chapter we explain the Atiyah-Hirzebruch spectral sequence that relates topological K-theory to singular cohomology and try to motivate the search for a motivic version. In the time since [18] appeared, which concerns motivation for such a motivic spectral sequence, many authors have produced results in this direction. We describe the Bloch-Lichtenbaum spectral sequence [8] for the spec...

متن کامل

Algebro-geometric Feynman Rules

We give a general procedure to construct algebro-geometric Feynman rules, that is, characters of the Connes–Kreimer Hopf algebra of Feynman graphs that factor through a Grothendieck ring of immersed conical varieties, via the class of the complement of the affine graph hypersurface. In particular, this maps to the usual Grothendieck ring of varieties, defining motivic Feynman rules. We also con...

متن کامل

Celestial Integration, Stringy Invariants, and Chern-schwartz-macpherson Classes

We introduce a formal integral on the system of varieties mapping properly and birationally to a given one, with value in an associated Chow group. Applications include comparisons of Chern numbers of birational varieties, new birational invariants, ‘stringy’ Chern classes, and a ‘celestial’ zeta function specializing to the topological zeta function. In its simplest manifestation, the integral...

متن کامل

The Motivic Cohomology of Stiefel Varieties

The main result of this paper is a computation of the motivic cohomology of varieties of n × m-matrices of of rank m, including both the ring structure and the action of the reduced power operations. The argument proceeds by a comparison of the general linear group-scheme with a Tate suspension of a space which is A1-equivalent to projective n− 1-space with a disjoint basepoint.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012