Motivic Classes of Commuting Varieties via Power Structures
نویسنده
چکیده
We prove a formula, originally due to Feit and Fine, for the class of the commuting variety in the Grothendieck group of varieties. Our method, which uses a power structure on the Grothendieck group of stacks, allows us to prove several refinements and generalizations of the Feit-Fine formula. Our main application is to motivic DonaldsonThomas theory.
منابع مشابه
Hirzebruch classes and motivic Chern classes for singular (complex) algebraic varieties
In this paper we study some new theories of characteristic homology classes of singular complex algebraic varieties. First we introduce a natural transformation Ty : K0(var/X) → H∗(X) ⊗ Q[y] commuting with proper pushdown, which generalizes the corresponding Hirzebruch characteristic. Here K0(var/X) is the relative Grothendieck group of complex algebraic varieties over X as introduced and studi...
متن کاملThe Motivic Spectral Sequence
In this chapter we explain the Atiyah-Hirzebruch spectral sequence that relates topological K-theory to singular cohomology and try to motivate the search for a motivic version. In the time since [18] appeared, which concerns motivation for such a motivic spectral sequence, many authors have produced results in this direction. We describe the Bloch-Lichtenbaum spectral sequence [8] for the spec...
متن کاملAlgebro-geometric Feynman Rules
We give a general procedure to construct algebro-geometric Feynman rules, that is, characters of the Connes–Kreimer Hopf algebra of Feynman graphs that factor through a Grothendieck ring of immersed conical varieties, via the class of the complement of the affine graph hypersurface. In particular, this maps to the usual Grothendieck ring of varieties, defining motivic Feynman rules. We also con...
متن کاملCelestial Integration, Stringy Invariants, and Chern-schwartz-macpherson Classes
We introduce a formal integral on the system of varieties mapping properly and birationally to a given one, with value in an associated Chow group. Applications include comparisons of Chern numbers of birational varieties, new birational invariants, ‘stringy’ Chern classes, and a ‘celestial’ zeta function specializing to the topological zeta function. In its simplest manifestation, the integral...
متن کاملThe Motivic Cohomology of Stiefel Varieties
The main result of this paper is a computation of the motivic cohomology of varieties of n × m-matrices of of rank m, including both the ring structure and the action of the reduced power operations. The argument proceeds by a comparison of the general linear group-scheme with a Tate suspension of a space which is A1-equivalent to projective n− 1-space with a disjoint basepoint.
متن کامل